Skip to main content

Advertisement

Log in

Design and Performance of a Novel Hybrid Photovoltaic–Thermal Collector with Pulsating Heat Pipe (PVTPHP)

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Hybrid photovoltaic–thermal collectors (PVT) are cogeneration components that convert solar energy into both electricity and heat. Pulsating heat pipe (PHP) is a fast-responding, flexible and high-performance thermal-conducting device. The aim of this work is design and performance of a novel hybrid photovoltaic–thermal collector with pulsating heat pipe (PVTPHP) for improving the electrical efficiency, by reducing the photovoltaic panel’s temperature, as well as taking advantage of the thermal energy produced. An experimental setup of PVTPHP is constructed, and its operating parameters are measured. The measured parameters include solar radiation intensity, ambient temperature, filling ratio, inclination angle, PV module temperature, open-circuit voltage, short-circuit current, condenser inlet temperature, condenser outlet temperature, water flow rate, fill factor, electrical efficiency, heat delivery and combined efficiency. The results show that this new design has given a good thermal and electric performance compared to the traditional PV and PVT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

PVTPHP:

Hybrid photovoltaic–thermal collector with pulsating heat pipe

PHP:

Pulsating heat pipe

PV:

Photovoltaic

FF:

Fill factor

FR:

Filling ratio

A :

Collector gross area, m2

C P :

Specific heat, kJ/kg K

I T :

Instantaneous/hourly flux incident on top cover of collector, W/m2

T i :

Condenser water inlet temperature (°C)

T o :

Condenser water outlet temperature (°C)

T a :

Ambient temperature (°C)

\(\dot{m}\) :

Mass flow rate, kg/s

η :

Efficiency

a:

Ambient

Cond:

Condenser

el:

Electrical

i:

Inlet

mp:

Maximum power

oc:

Open circuit

RF:

Standard test conditions

sc:

Short circuit

th:

Thermal

References

  • Akachi H Structure of a heat pipe, U.S. Patent 4921,041 Patent, 1990

  • Aste N, Lenonforte F, Del Pero C (2015) Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Sol Energy 112:85–90

    Article  Google Scholar 

  • Bosanac M, Sorensen B, Ivan K, Sorensen H, Bruno N, Jamal B (2003) Photovoltaic/thermal solar collectors and their potential in Denmark. Final Report, EFP Project, 1713/00-0014

  • Charalambous PG, Maidment GG, Kalogirou SA, Yiakoumetti K (2007) Photovoltaic thermal (PV/T) collectors: a review. Appl Thermal Eng 27(2–3):275–286

    Article  Google Scholar 

  • Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energy 87(2):365–379

    Article  Google Scholar 

  • Cox CH, Raghuraman P (1985) Design considerations for flat-plate- photovoltaic/thermal collectors. Sol Energy 35(3):227–241

    Article  Google Scholar 

  • Dubey S, Tay AAO (2013) Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy Sustain Dev 17:1–12

    Article  Google Scholar 

  • Duffie JA, Beckman WA (2005) Solar energy of thermal processes, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Dupeyrat P, Menezo C, Fortuin S (2014) Study of the thermal and electrical performances of PVT solar hot water system. Energy Build 68:751–755

    Article  Google Scholar 

  • Fiorentini M, Cooper P, Ma Z (2015) Development and optimization of an innovative HVAC system with integrated PVT and PCM storage for a net-zero energy. Energy Build 94:21–32

    Article  Google Scholar 

  • Florschuetz LW (1979) Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol Energy 22(4):361–366

    Article  Google Scholar 

  • Fudholi A, Sopian K, Yazdi MH, Ruslan MH, Ibrahim A, Kazem HA (2014) Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers Manag 78:641–651

    Article  Google Scholar 

  • Gang P, Huide F, Tao Z, Jie J (2011) A numerical and experimental study on a heat pipe PV/T system. Sol Energy 85:911–921

    Article  Google Scholar 

  • Herrando M, Markides CN, Hellgardt K (2014) A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance. Appl Energy 122:288–309

    Article  Google Scholar 

  • Ibrahim A, Othman MY, Ruslan MH, Mat S, Sopian K (2011) Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew Sustain Energy Rev 15(1):352–365

    Article  Google Scholar 

  • Jones AD, Underwood CP (2001) A thermal model for photovoltaic systems. Sol Energy 70(4):349–359

    Article  Google Scholar 

  • Kalogirou SA (2001) Use of TRYNSYS for modeling and simulation of a hybrid PV thermal solar system for Cyprus. Renew Energy 23:247–260

    Article  Google Scholar 

  • Kern EC Jr, Russel MC (1978) Combined photovoltaic and thermal hybrid collector systems. In: Proceedings of the 13th ISES photovoltaic specialists. Washington, pp 1153–1157

  • Khairnasov SM, Naumova AM (2016) Heat pipes application to solar energy systems. Appl Sol Energy 52(1):47–60

    Article  Google Scholar 

  • Mishra RK, Tiwari GN (2013) Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology. Sol Energy 91:161–173

    Article  Google Scholar 

  • Qian J-F, Ji-Li Z, Liang-dong MA (2010) Analysis of a new photovoltaic thermal building integration system and correlative technology. Build Energy Environ 29(2):12–16

    Google Scholar 

  • Quan Z, Li N, Zhao Y, Tang X (2010) The experiment research for solar PV/T system based on flat-plate heat pipes. In: Proceedings of the 17th Chinese national HVAC&R academic conference

  • Sarhaddi F, Farahat S, Ajam H, Behzadmehr A (2011) Exergetic optimization of a solar photovoltaic thermal (PV/T) air collector. Int J Energy Res 35(9):813–827

    Article  Google Scholar 

  • Sweidan A, Ghaddar N, Ghali K (2016) Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage. J Renew Sustain Energy 8:023501. https://doi.org/10.1063/1.4943091

    Article  Google Scholar 

  • Tang X, Zhao Y, Quan Z (2009) The experimental research of using novel flat-plate heat pipe for solar cells cooling. In: Proceedings of the Chinese thermal engineering physics of heat and mass transfer conference, pp 239–241

  • Tiwari A, Sodha MS, Chandra A, Joshi JC (2006) Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Sol Energy Mater Sol Cells 90(2):175–189

    Article  Google Scholar 

  • Touafek K, Haddadi M, Malek A (2013) Design and modeling of a photovoltaic thermal collector for domestic air heating and electricity production. Energy Build 59:21–28

    Article  Google Scholar 

  • Tripanagnostopoulos Y, Nousia T, Souliotis M, Yianoulis P (2002) Hybrid photovoltaic thermal solar systems. Sol Energy 72:217–234

    Article  Google Scholar 

  • Van Helden WGJ, Van Zolingen RJC, Zondag HA (2004) PV thermal systems: PV panels supplying renewable electricity and heat. Prog Photovolt Res Appl 12:415–426

    Article  Google Scholar 

  • Yazdanpanahi J, Sarhaddi F, Mahdavi Adeli M (2015) Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses. Sol Energy 118:197–208

    Article  Google Scholar 

  • Zhang J et al (2008) Closed loop capillary solar photovoltaic board, Patent CN 2008 102 28 051 A: 08.10.08

  • Zhang X, Zhao X, Smith S, Xu J, Yu X (2012) Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew Sustain Energy Rev 16:599–617

    Article  Google Scholar 

  • Zondag HA (2008) Flat-plate PV-thermal collectors and systems: a review. Renew Sustain Energy Rev 12(4):891–959

    Article  Google Scholar 

  • Zondag HA, De Vries DW, Van Helden WGJ, Van Zolingen RJC, Van Steenhoven AA (2002) The thermal and electrical yield of a PV–thermal collector. Sol Energy 72(2):113–128

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Iran National Science Foundation (INSF), through grant No. 9410017 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Saidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavoosi Balotaki, H., Saidi, M.H. Design and Performance of a Novel Hybrid Photovoltaic–Thermal Collector with Pulsating Heat Pipe (PVTPHP). Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 371–381 (2019). https://doi.org/10.1007/s40997-018-0164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0164-y

Keywords

Navigation